Abstract
Cancer immunotherapy is a powerful weapon in the fight against cancers. Cyclic dinucleotides (CDNs) have demonstrated the great potential by evoking the immune system to fight cancers. There are still a lot of unmet needs for highly active CDNs in clinical applications due to low cell permeation and serum stability. Here we reported S-acylthioalkyl ester (SATE)-based prodrugs of deoxyribose cyclic dinucleotides (dCDNs) with three different types of internucleotide linkages (3′,3′:11a; 2′,3′:11b; 2′,2′:11c). The parent dCDNs could be efficiently released from SATE-dCDNs by cellular esterases. Compared to 2′,3′-cGAMP and ADU-S100, 11a exhibited much higher potency of activating STING pathway and higher serum stability. In a CT26-Luc tumor-bearing animal model, 11a showed the efficient antitumor activity in eliminating the established tumor and induced significant increase of mRNA expression of IFN-β and other related inflammatory cytokines. Hence, SATE-dCDN prodrugs demonstrated their benefits in promoting cell penetration, improving serum stability, and thus enhancing bioactivity, suggesting their potential application as immunotherapy in a variety of malignancies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.