Abstract

The Rytov theory for the propagation of Helmholtz-Gauss (HzG) beams in turbulent atmosphere is presented. We derive expressions for the first and second-order normalized Born approximations, the second-order moments, and the transverse intensity pattern of the HzG beams at any arbitrary propagation distance. The general formulation is applied to study the propagation of several special cases of the HzG beams, in particular, the Bessel-Gauss and Mathieu-Gauss beams and their pure nondiffracting counterparts, the Bessel and Mathieu beams. For numerical purposes, we assume the standard Kolmogorov distribution to model the power spectrum of the atmospheric fluctuations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.