Abstract

The type 2 ryanodine receptor (RyR2) is a sarcoplasmic reticulum Ca2+ release channel that plays a central role in cardiac excitation-contraction coupling. Abnormal activity of the RyR2 is linked to abnormal Ca2+ signaling in cardiac cells, which often results in cardiac arrhythmias. For example, amino acid mutations in RyR2 have been reported to cause various types of arrhythmias, including catecholaminergic polymorphic ventricular tachycardia (CPVT), idiopathic ventricular fibrillation, and left ventricular non-compaction. At present, the total number of disease-associated RyR2 mutations exceeds 300. In addition, in chronic heart failure, modification of RyR2 by phosphorylation, oxidation or S-nitrosylation may cause abnormal channel activity. Arrhythmogenic mechanisms of these various disorders are not yet fully understood. We have recently established a method to quantitatively evaluate the effects of various arrhythmogenic mutations and modifications on RyR2 channels by using HEK293 expression system. We found that arrhythmogenic mutations in RyR2 are classified into two groups: gain-of-function and loss-of-function of the channel. Since they are indistinguishable in clinical diagnosis, our analysis is very useful for diagnosis and choice of treatment strategies for RyR2-linked arrhythmogenic diseases. This review describes the current advances and issues of research on RyR2 mutation-related arrhythmogenic disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.