Abstract

The decomposition of perennial ryegrass straw was examined under mesophilic and thermophilic temperatures. Thermophilic conditions were used to define the composting process. The change in lipids, sugars, soluble polysaccharides, cellulose, and lignin was determined during a 45-day incubation. C, H, O, and N steadily decreased in both temperature treatments. The lignin content, as measured by the Klason or 72% H2SO4 method, decreased by 10% under mesophilic and 29% under thermophilic conditions. The Klason lignin C loss was 25 and 39% under mesophilic and thermophilic incubations, respectively. The changes in element (C, N, H, and O) ratios indicated that 94% of the lignin fraction was altered during both low- and high-temperature incubations. The changes in the lignin-like fraction as shown by elemental ratios were more extensive than those indicated by the Klason method, showing that this lignin determination has limited value in describing plant residue decomposition. The decomposition of the straw components and the concomitant degradation of the lignin fraction represent an important decomposition process that facilitates the composting of ryegrass straw with a high C:N ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.