Abstract

A strong enhancement of absorption to the lowest A12 state is observed for vibrationally excited chloromethyl radicals. It is demonstrated that this enhancement is due to a significant increase in both electronic and vibrational Franck–Condon factors. Electronic structure calculations of potential energy surfaces (PESs) and transition dipole moments for the ground and the two lowest excited states of A1 symmetry, the 1 2A1 valence and 22A1 Rydberg states, reveal the origin of this effect. The shelflike shape of the 1 2A1 PES in the Franck–Condon region and the strong dependence of the electronic transition dipole moment on C–Cl distance are responsible for the enhancement. Analysis of the shape of the electron density distribution demonstrates that Rydberg–valence interaction in the two lowest excited states causes the changes in the shape of PESs and transition dipoles with C–Cl distance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call