Abstract

Exceptional points are special parameter points in spectra of open quantum systems, at which resonance energies become degenerate and the associated eigenvectors coalesce. Typical examples are Rydberg systems in parallel electric and magnetic fields, for which we solve the Schrödinger equation in a complete basis to calculate the resonances and eigenvectors. Starting from an avoided crossing within the parameter-dependent spectra and using a two-dimensional matrix model, we develop an iterative algorithm to calculate the field strengths and resonance energies of exceptional points and to verify their basic properties. Additionally, we are able to visualise the wave functions of the degenerate states. We report the existence of various exceptional points. For the hydrogen atom these points are in an experimentally inaccessible regime of field strengths. However, excitons in cuprous oxide in parallel electric and magnetic fields, i.e., the corresponding hydrogen analogue in a solid state body, provide a suitable system, where the high-field regime can be reached at much smaller external fields and for which we propose an experiment to detect exceptional points.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call