Abstract

We study the population of Rydberg excited states in the strong field interaction of atomic hydrogen with 800, 1200 and 1600 nm laser pulses. The total excitation probability displays strong out-of-phase modulation with respect to the weak modulation in the total ionization probability as the laser intensity is increased. The results are explained in terms of channel closing, to demonstrate multiphoton ionization features in the strong tunnel ionization regime. We also explain the stability of high Rydberg states in strong laser fields in contrast to other previous ionization stabilization models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.