Abstract

We investigate a hybrid system composed of ultracold Rydberg atoms immersed in an atomic Bose-Einstein condensate (BEC). The coupling between Rydberg electrons and BEC atoms leads to excitations of phonons, the exchange of which induces a Yukawa interaction between Rydberg atoms. Because of the small electron mass, the effective charge associated with this quasiparticle-mediated interaction can be large. Its range, equal to the BEC healing length, is tunable using Feshbach resonances to adjust the scattering length between BEC atoms. We find that for small healing lengths, the distortion of the BEC can "image" the Rydberg electron wave function, while for large healing lengths the induced attractive Yukawa potentials between Rydberg atoms are strong enough to bind them.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.