Abstract

The emergent phases of strongly correlated spin-1/2 Fermi gases of Rydberg dressed atoms in a one dimensional optical lattice are theoretically investigated. At weak coupling a bosonization description is used to demonstrate the ability to drive alternating quantum phase transitions between distinct Luttinger liquids. At strong coupling the ground state develops non-trivial phase separation exhibiting Luttinger liquid ''puddles'' separated by magnetic domain walls due to the interplay of the incommensurate filling and the Rydberg core length scale. These phases can be detected in ultracold gases of Rydberg atoms made from $^6$Li.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call