Abstract

Abstract Terahertz heterodyne receivers with high sensitivity and spectral resolution are crucial for various applications. Here, we present a room-temperature atomic terahertz heterodyne receiver that achieves ultrahigh sensitivity and frequency resolution. At a signal frequency of 338.7 GHz, we obtain a sensitivity of 2.88 ± 0.09 μV⋅cm−1⋅Hz−1/2 for electric field measurements. The calibrated linear dynamical range spans approximately 89 dB, ranging from −110 dBV/cm to −21 dBV/cm. We demodulate a 400 symbol stream encoded in 4-state phase-shift keying, demonstrating excellent phase detection capability. By scanning the frequency of the local oscillator, we realize a terahertz spectrometer with Hz level frequency resolution. This resolution is more than two orders of magnitude higher than that of existing terahertz spectrometers. The demonstrated terahertz heterodyne receiver holds promising potential for working across the entire terahertz spectrum, significantly advancing its practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.