Abstract
Modulus maxima derived from the continuous wavelet transform offers an enhanced time-frequency analysis technique for ECG signal analysis. Features within the ECG can be shown to correspond to various morphologies in the continuous modulus maxima domain. This domain has an easy interpretation and offers a good tool for the automatic characterization of the different components observed in the ECG in health and disease. As an application of these properties we have developed an R-wave detector and tested it using patient signals recorded in the Coronary Care Unit of the Royal Infirmary of Edinburgh (attaining a sensitivity of 99.53% and a positive predictive value of 99.73%) and with the MIT/BIH database (attaining a sensitivity of 99.7% and a positive predictive value of 99.68%).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.