Abstract

The genome of Mycobacterium tuberculosis encode for several hypothetical proteins that needed to be characterized. Rv2037c, a hypothetical protein, was 25 and 4 folds upregulated under acidic and nutritive stress, respectively in M. tuberculosis H37Ra. The protein demonstrated lipolytic activity with pNP-decanoate with optimum pH 8.0 and temperature 40 °C. In addition, the protein demonstrated phospholipase activity. To understand the effect of rv2037c on mycobacterium physiology, the gene was cloned and expressed in M. smegmatis. The protein was found in membrane and extracellular fraction. The expression of rv2037c in M. smegmatis (MS_Rv2037c) altered colony morphology and cell surface features like enhanced biofilm and pellicle formation. MS_Rv2037c decreased cell-wall permeability, enhanced TDM content, resistance against various stresses and antibiotics. MS_Rv2037c demonstrated better infection and intracellular survival capability in infected THP-1 macrophage. Macrophages treated with Rv2037c demonstrated irregular cell membrane. Mice infected with MS_Rv2037c had higher bacterial load in lung, liver and spleen compared to control. Rv2037c induced the production of pro-inflammatory cytokines TNFα and IL12, suggesting its role in immune-modulation. Recombinant protein also generated humoral response in EPTB and MDR-TB patients. The results pointed towards the crucial role of this enzyme in cell-wall modulation, infection and intracellular survival of mycobacterium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.