Abstract

We characterize Rv0474, a putative transcriptional regulatory protein of Mycobacterium tuberculosis, which is found to function as a copper-responsive transcriptional regulator at toxic levels of copper. It is an autorepressor, but at elevated levels (10-250 μm) of copper ions the repression is relieved resulting in an increase in Rv0474 expression. Copper-bound Rv0474 is recruited to the rpoB promoter leading to its repression resulting in the growth arrest of the bacterium. Mutational analysis showed that the helix-turn-helix and leucine zipper domains of Rv0474 are essential for its binding to Rv0474 and rpoB promoters, respectively. The mechanism of Rv0474-mediated rpoB regulation seems to be operational only in pathogenic mycobacteria that can persist inside the host.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call