Abstract

GQ Lup B is one of the few substellar companions with a detected cicumplanetary disk (CPD). Observations of the CPD suggest the presence of a cavity, possibly formed by an exosatellite. Using the Keck Planet Imager and Characterizer (KPIC), a high-contrast imaging suite that feeds a high-resolution spectrograph (1.9–2.5 µm, R∼35,000), we present the first dedicated radial velocity (RV) observations around a high-contrast, directly imaged substellar companion, GQ Lup B, to search for exosatellites. Over 11 epochs, we find a best and median RV error of 400–1000 m s−1, most likely limited by systematic fringing in the spectra due to transmissive optics within KPIC. With this RV precision, KPIC is sensitive to exomoons 0.6%–2.8% the mass of GQ Lup B (∼30 M Jup) at separations between the Roche limit and 65 R Jup, or the extent of the cavity inferred within the CPD detected around GQ Lup B. Using simulations of HISPEC, a high resolution infrared spectrograph planned to debut at W.M. Keck Observatory in 2026, we estimate future exomoon sensitivity to increase by over an order of magnitude, providing sensitivity to less massive satellites potentially formed within the CPD itself. Additionally, we run simulations to estimate the amount of material that different masses of satellites could clear in a CPD to create the observed cavity. We find satellite-to-planet mass ratios of q > 2 × 10−4 can create observable cavities and report a maximum cavity size of ∼51 R Jup carved from a satellite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.