Abstract
Cluster-derived Ru(x)Pt(y)Sn(z) nanoparticles are active catalysts in the hydrogenation of nitrobenzene. The nature of the active sites has been elucidated by FTIR spectroscopy using CO and NO as probe molecules. A new metal carbonyl cluster precursor, Pt(2)Ru(2)(SnBu(t)(3))(2)(CO)(9)(μ-H)(2), has been synthesized to obtain a Ru(2)Pt(2)Sn(2)/SiO(2) catalyst, that displayed remarkably high levels of conversion and selectivities compared to other bi-and monometallic analogues. Spectroscopic comparisons with Ru(5)PtSn/SiO(2) indicate that both the nature and the stoichiometry of the metals play a key role in modulating the catalytic activities and selectivities. A multinuclear single-site containing Pt centers, which facilitate the hydrogen activation, coupled with a highly reactive Ru site, possibly involved in the nitrobenzene activation, can be hypothesized. The oxophilicity of tin helps with the anchoring of the nanoparticles, aids the dispersion of the other metals, and can play an important role in influencing the selectivity to aniline.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.