Abstract

JAK/STAT signaling plays an important role in regulating cell proliferation. Reducing proliferation and inducing cell death with gene-specific inhibitors such as ruxolitinib, Receptor tyrosine kinases (RTK) inhibitor targeting JAK1/2, are therapeutic approaches. The use of nanoparticles can reduce the toxicity and side effects of drugs, as they act directly on cancer cells and can selectively increase drug accumulation in tumor cells. Poly-ɛ-caprolactone (PCL) is a polymer that is frequently used in drug development. In this study, Rux-PCL-NPs were synthesized to increase the effectiveness of ruxolitinib. In addition, this study aimed to determine the effect of Rux-PCL-NPs on JAK/STAT signaling and apoptotic cell death. Rux-PCL-NPs were synthesized by nanoprecipitation. The Rux-PCL-NPs had a spherical and mean particle size of 219 ± 88.66nm and a zeta potential of 0.471 ± 0.453 mV. In vitro cytotoxicity and antiproliferative effects were determined by MTT and soft agar colony formation assays, respectively. The effects of ruxolitinib, PCL-NPs, and Rux-PCL-NPs on apoptosis and the JAK/STAT pathway in cells were examined by western blot analysis. PCL-NPs did not have a toxic effect on the cells. The IC50 value of Rux-PCL-NPs was decreased 50-fold compared to that of ruxolitinib. Rux-PCL-NPs promoted cell death by downregulating JAK2 and STAT5, thereby inhibiting the JAK/STAT pathway. Our results revealed that Rux-PCL-NPs, which increased the efficacy of ruxolitinib, regulated apoptosis and the JAK2/STAT5 pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.