Abstract
Modifying asphalt binders is an effective method of improving the performance of asphalt pavement, such as its resistance to rutting. However, because modification changes the behaviour of binders, substantial laboratory testing is required before field application to determine the best mixtures. This research aimed to evaluate the impacts of temperature, stresses, polymer type, and modification rate on the rutting behaviour of the asphalt binder modified with fly-ash-based geopolymer (GF), styrene butadiene styrene (SBS), and a combination of SBS and GF. The rheological properties of asphalt binders were investigated using the frequency sweep test at various temperatures. Additionally, the multiple stress creep recovery test was conducted at various temperatures and stresses to calculate the non-recoverable creep compliance (J) and the percent strain recovery (R). The rutting resistance of asphalt mixture was assessed using the Hamburg wheel rut test. The results revealed that the asphalt binder with 8% geopolymer (8%GF) exhibited the best response in terms of complex shear modulus (G), rutting factor (G/sin), R, and J compared to the 4%GF and 12%GF at different temperatures. Another interesting finding is that GF’s use in the hybrid binder (2%SBS + 8%GF) led to a significant increase in the shear complex modulus and a decrease in the phase angle compared to the binder modified with 2%SBS. The geopolymer decreased the binder’s sensitivity to temperature for both unaged and RTFO asphalt binders. The hybrid binder would also improve strain recovery under high stress and temperatures and the ability to withstand severe traffic loads. Furthermore, there is a crucial relationship between temperature and J, which could help asphalt pavement designers select suitable modifiers considering the local climate and traffic volume.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.