Abstract

In this study we analyzed the protective action of the flavonoid rutin on peroxynitrite (ONOO(-)) mediated impairment of sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1 isoform), especially related to posttranslational and conformational changes. Rutin concentration dependently protected ONOO(-) induced SERCA1 activity decrease with effective concentration EC50 of 18±1.5µM. Upon treatment with ONOO(-), this flavonoid also prevented SERCA1 from thiol group oxidation and significantly reduced tyrosine nitration and protein carbonyl formation. In the absence of ONOO(-), rutin (250 and 350µM) stimulated SERCA1 activity at 2.1mM [ATP] and 10µM [Ca(2+)]free. According to changes in the kinetic parameters V max and K m with regard to [ATP], rutin (250µM) increased the rate of enzyme catalysis and decreased the affinity of SERCA1 to ATP. FITC fluorescence decreased in the presence of rutin (150 and 250µM), indicating conformational changes in the cytosolic ATP binding region of SERCA1. In silico study confirmed the binding of rutin in the cytosolic region of SERCA1, in the vicinity of the ATP binding site. Residue Glu183 localized within the conserved TGES loop was identified to play a key role in rutin-SERCA1 interaction (H-bond length of 1.7Å), elucidating the ability of rutin to affect the affinity of SERCA1 to ATP. The binding of rutin in the proximity of Lys515 is likely to cause a decrease in FITC fluorescence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.