Abstract

Rutin, a polyphenolic plant flavonoid, is found in citrus fruits, mulberry, cranberries and buckwheat with reported anti-diabetic, anti-fungal, anti-inflammatory and anti-bacterial activity. We appraise the effect of rutin on hydrogen peroxide (H2O2) mediated deregulation of antioxidant enzyme activity, non-enzymatic biomarkers, reactive oxygen species production (in vitro and in vivo) and on echinocyte formation (ex-vivo). In addition to it the interaction studies (in silico) against targeted enzymes and membrane proteins were also performed. A pre-treatment with rutin (16.3 µM) significantly attenuate the altered level of glutathione, sulfhydryl, malondialdehyde and carbonyl content. The activity and expression of catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase were also decreased significantly (p < 0.01) in presence of H2O2, while pre-treatment of rutin ameliorates the effect of H2O2. Furthermore, rutin at higher tested concentration protects the morphology of erythrocytes by decreasing the reactive oxygen species level (p < 0.01) as compared to H2O2 treatment. In silico analysis with selected membrane proteins and enzymes revealed that the rutin did not modulate the structure and function of the preferred proteins. In addition, rutin down regulates the inducible nitric oxide synthase expression and up-regulate the nuclear factor (erythroid-related factor 2) expression. Moreover, the lower mean erythrocyte fragility values of rutin (0.53 ± 0.024–0.61 ± 0.014) alone or with H2O2 (0.65 ± 0.021) indicate the protection and non-toxic behaviour. These finding suggests that rutin; a nutritional compound can reduce oxidative stress induced by H2O2 by increasing the expression of Nrf2 and endogenous antioxidant enzymes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call