Abstract

In this paper we demonstrate a branched Rutile TiO2 nanorod structure which used as a model architecture for efficient photoelectrochemical devices for simultaneously offers a large contact area with the electrolyte, excellent lighttrapping characteristics, and a highly conductive pathway for charge carrier collection. We developed a facile hydrothermal synthesis method to achieve rutile TiO2 nanorod arrays on FTO substrate without use of any acid. The morphology of nanorods can be finely tuned by changing the growth parameters, and the potential of the as-made rutile TiO2 nanorods in perovskite solar cells was evaluated, showing power conversion efficiency up to 11.1%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.