Abstract

We have investigated the crystalline quality of an epitaxially-grown γ-Fe 2 O 3 (001) film on MgO(001) substrate along with Mg and Fe inter-diffusion using Rutherford backscattering spectrometry (RBS) and channeling experiments. The channeling effect in the film appears to be reduced compared to an ideal single crystal, with the minimum yield for Fe determined to be in the range 16-18%. Growth at a substrate temperature of 450°C promotes limited Mg out-diffusion into the film. Subsequent annealing results in further Mg out-diffusion, which increases in extent with increasing temperature. A minimum of 4 at.% Mg was detected throughout the film at temperatures below the onset of Fe in-diffusion, which was found to be 800°C. This impurity cation concentration is comparable to the native vacancy concentration in γ-Fe 2 O 3 (4.8 at.%), suggesting that Mg occupies cation vacancy sites, as already established by Auger electron diffraction measurements for this system. The Mg concentration in the film was 8 at.%, while the associated Fe concentration in the substrate was 3.4 at.% after annealing at 800°C. Moreover, these cation impurities were uniformly distributed throughout the film and substrate, with the fraction of substitution in both cases >90% at lower temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.