Abstract

The structure and function of iron(II)-ruthenium(II) hybrid hemoglobins alpha(Ru-CO)2 beta(Fe)2 and alpha(Fe)2 beta(Ru-CO)2, which can serve as models for the intermediate species of the oxygenation step in native human adult hemoglobin, were investigated by measuring oxygen equilibrium curves and the Fe(II)-N epsilon (His F8) stretching resonance Raman lines. The oxygen equilibrium properties indicated that these iron-ruthenium hybrid hemoglobins are good models for the half-liganded hemoglobin. The pH dependence of the oxygen binding properties and the resonance Raman line revealed that the quaternary and tertiary structural transition was induced by pH changes. When the pH was lowered, both the iron-ruthenium hybrid hemoglobins exhibited relatively higher cooperativity and a Raman line typical of normal deoxy structure, suggesting that their structure is stabilized at a "T-like" state. However, the oxygen affinity of alpha(Fe)2 beta(Ru-CO)2 was lower than that of alpha(Ru-CO)2 beta(Fe)2, and the transition to the "deoxy-type" Fe-N epsilon stretching Raman line of alpha(Fe2)beta(Ru-CO)2 was completed at pH 7.4, while that of the complementary counterpart still remained in an "oxy-like" state under the same condition. These observations clearly indicate that the beta-liganded hybrid has more "T"-state character than the alpha-liganded hybrid. In other words, the ligation to the alpha subunit induces more pronounced changes in the structure and function in Hb than the ligation to the beta subunit. This feature agrees with our previous observations by NMR and sulfhydryl reactivity experiments. The present results are discussed in relation to the molecular mechanism of the cooperative stepwise oxygenation in native human adult hemoglobin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call