Abstract

Metal organic frameworks (MOFs) based sensors exhibited a good deal of merits on sensitive detection like low reagent consumption, good chemical stability and high detection efficacy. Here, we reported a novel electrochemiluminescence (ECL) sensor which was based on tris(2,2′-bipyridyl) ruthenium(II) (Ru(bpy)32+) encapsulated multifunctional metal organic frameworks (Ru-MOFs) as nanocarrier and nanoreactor for sensitive detection of H2S. Moreover, novel co-reactants NBD-amine was introduced into the ECL sensor as recognition probe. The introducing of Ru-MOFs successfully increased the amount of luminescent probe in the sensing system. At the same time, the Ru-MOFs as nanoreactors improved the molecule reaction efficiency inside the MOFs, including Ru(bpy)32+/co-reactants, and NBD-amine/H2S. Furthermore, the Ru-MOFs has superior adsorption capacity for H2S, which will facilitate the enrichment of H2S at the sensing interface. These were all contributed to enhance the ECL signal and improve the sensitivity of proposed ECL sensor. As a result, the proposed ECL sensor had excellent detection performance for H2S with the dynamic range from 1.0 × 10−11 mol L−1 to 1.0 × 10−4 mol L−1 and the detection limit was 2.5 × 10−12 mol L−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.