Abstract

Ruthenium oxide, prepared by the thermal decomposition method, has the highest known initial electrocatalytic activity for oxygen evolution in acid electrolyte. However, this material is not stable in the electrolyte and at the same time exhibits a significant increase of oxygen overpotential with time, probably due to a chemical transformation of the oxide from a lower to a higher valence state. Efforts were made to stabilize ruthenium by preparing mixed oxides with Ir and/or Ta using the thermal decomposition method. The electrocatalytic activities for oxygen evolution on these oxides in were determined using the potentiostatic method. The surface areas of these oxides were estimated using cyclic voltammetry. Dual Tafel slopes (approximately 30 and 40 mV) were found on most of these oxides. The ternary oxide exhibited a single Tafel slope of 30 mV, had the lowest overpotential, and showed minimum variation of overpotential with time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.