Abstract
Commercial ruthenium red has been tested for its purity by spectrophotometry. Impurities detected by this method could be abolished by nitric acid-precipitation of ruthenium brown. This substance has no effect on cell surface staining and converts almost completely to ruthenium red under the conditions used in electron microscopy. It was found, by photometric analysis, that in the ruthenium red-osmium tetroxide-cacodylate combination, generally used for cell surface staining, chemical reactions between ruthenium red and osmium tetroxide occur. As aerial oxidation of hexammineruthenium2+ leads to a product with some surface staining capability, it is suggested that an oxidized product of ruthenium red is responsible for binding to cellular components, and that a reduced product of osmium tetroxide gives an additional contrast enhancement. In ruthenium red-osmium dioxide combinations ruthenium red seems to bind to cell surfaces without any molecular alteration, and contrast is gained by the model proposed by Blanquet (1976b). The latter method could open a way for investigating the binding of ruthenium red to certain natural compounds involved in calcium transport, as postulated by a number of authors. Both ruthenium-osmium combinations differ in their cell surface staining ability. The ruthenium red-osmium dioxide combination tends to form distinct subunits, whereas the osmium tetroxide variety stains homogeneously. In combination with osmium dioxide, the surface staining is affected by EDTA, and, in contrast to osmium tetroxide, a successive application of ruthenium red and osmium dioxide as possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.