Abstract
A novel heterostructured material, cobalt phosphate-SiO2 mesostructured cellular foams (CoPO-MCF), was successfully synthesized by in situ growth. The material was characterized by X-ray diffraction (XRD), nitrogen sorption, temperature-programmed reduction (H2-TPR and CO-TPR), temperature-programmed desorption of NH3 (NH3-TPD), and X-ray photoelectron spectroscopy (XPS). A ruthenium precursor was readily introduced and highly dispersed on the CoPO nanophases of the CoPO-MCF through an impregnation method. The resulting Ru/CoPO-MCF catalyst exhibited high catalytic activity for the oxidation of vinyl chloride (VC). The results of three consecutive runs and long-term tests showed high stability of the Ru/CoPO-MCF for the catalytic oxidation of VC. The unique heterostructures of the CoPO-MCF not only improve the reducibility and acidity of the MCF but also strengthen the interaction between ruthenium oxide nanoparticles and the CoPO-MCF support, which contributes to the enhanced catalytic performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.