Abstract
For the purpose as stated in title, three Ru catalysts were prepared with the same treated carbon nanotubes. One has most of Ru nanoparticles confined inside the channels, and the other two have most of Ru nanoparticles outside through different preparation methods. Heat treating was performed to obtain another three catalysts. Characterization by X-ray photoelectron spectroscopy indicated that heat treating made Ru nanoparticles electron rich. Hydrogenation of benzene, p-chloronitrobenzene, and cinnamaldehyde was chosen as model reactions to evaluate all these catalysts. Electronic effect plays an important role in catalytic performance. The electron-rich Ru would be favorable for p-chloronitrobenzene hydrogenation, but unfavorable for benzene hydrogenation. For cinnamaldehyde hydrogenation, the electron-rich Ru would be favorable for adsorption of CO bond rather than CC bond and thus promoted the selectivity to cinnamyl alcohol. A confinement effect induced by the electronic effect has different influences on these substrates, and it can be enhanced by heat treating for all the reactions. Finally, we drew a correlation of electronic structures between catalysts and substrates accounting for these phenomena.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.