Abstract

Two novel Ru Fischer–Tropsch (FT) catalysts were made that were supported on the inside of two hollow carbon spheres that differed in terms of their shell porosity. Mesoporous Stober spheres were made and Ru deposited on the silica. The Ru/silica spheres were encapsulated with carbon deposited by CVD (toluene) or from resorcinol/formaldehyde. Removal of the silica gave Ru@HCS (dRu=5.5) and Ru@MHCS (3.2nm) that had carbon shells (d=ca. 20nm) with different physicochemical properties as evidenced by the TEM, nitrogen adsorption-desorption, TGA, Raman spectroscopy and XRD measurements. FT studies were performed on the two catalysts (10bar; 190/220/250°C; 2/1 ratio H2/CO). Classical Fischer–Tropsch data was obtained indicating that the catalysts could access the reactants and that FT products could escape from the inside of the spheres (acting as a nanoreactor). Activity data indicated diffusion control of CO/H2 into the nanoreactor and selectivity data indicated an alpha value of 0.74–0.78 (220°C). Typical product selectivity associated with small Ru particles was observed and the methane content increased with reaction temperature. No substantial Ru sintering occurred below 220°C. It is thus seen that the porosity of the two hollow carbon architectures is suitable for the FT polymerization reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.