Abstract

An elegant synergistic catalytic system comprising a ruthenium complex with a chiral Brønsted acid was developed for a four-component Mannich/cascade aza-Michael reaction. The ruthenium-associated ammonium ylides successfully trapped with in situ generated imines indicates a stepwise process of proton transfer in the ruthenium-catalyzed carbenoid N-H insertion reaction. The different decomposition abilities of various ruthenium complexes towards diazo compounds were well explained by the calculated thermodynamic data. The transformation features a mild, rapid, and efficient method for the synthesis of enantiomerically pure 1,3,4-tetrasubstituted tetrahydroquinolines bearing a quaternary stereogenic carbon center from simple starting precursors in moderate yields with high diastereo- and enantioselectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.