Abstract
The presence of heavy metals such as mercury (Hg), cadmium (Cd), arsenic (As), chromium (Cr), thallium (T1) and ruthenium (Ru) in wastewater, even in trace quantities, could cause a negative impact on our health. The adsorption method has been proven to be the most effective and low-cost method for removing of heavy metals from wastewater. In this study, biomass waste was used as a low-cost precursor for the production of cost-effective charcoal and activated carbon. Solid waste from a common local bamboo species (Gigantochloa sp.) was used to produce charcoal and activated carbon. The simulated wastewater was made with Ruthenium complex (N3) dye solution as the adsorbate. The bamboo charcoal was prepared by carbonization, and activated carbon was prepared by NaOH activation after carbonization. The morphological characteristics, chemical compositions, and the lattice structures of the prepared adsorbents were analyzed using SEM, EDX, and XRD. The adsorption performance of the prepared adsorbents toward N3 dye was evaluated, and the highest adsorption capacity of 1.50 mg/g was obtained from activated carbon. The results showed that the activated bamboo-based charcoal has a better adsorption efficiency when compared to the bamboo charcoal for the treatment of N3 dye in wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.