Abstract

AbstractRuthenium complexes [Ru(CO)2(PPh3)2(O2CR)2] – 3a (R = CH2OCH3), 3b (R = iPr), 3c (R = tBu), 3d (R = 2‐cC4H3O), and 3e (R = Ph) – were synthesized by treatment of Ru(CO)3(PPh3)2 with the corresponding carboxylic acids. The molecular structures of the newly synthesized complexes in the solid state are discussed. Compounds 3a–e were successfully applied as catalysts in the addition of carboxylic acids to propargylic alcohols to give the corresponding β‐oxo esters in good to excellent yields even in air. The different carboxylate ligands do not have an influence on the productivities, because the carboxylates exchange rapidly under the applied reaction conditions, as was confirmed by 31P{1H} NMR spectroscopic studies. The addition of catalytic amounts of Na2CO3 resulted in an increase in β‐oxo ester formation. The reaction is tolerant to the use of versatile functional groups on the propargylic alcohols and carboxylic acids, revealing a broad substrate generality. In contrast to most other known catalytic systems, even sterically hindered substrates, including 2,4,6‐trimethylbenzoic acid, 1,1‐diphenylprop‐2‐yn‐1‐ol, or the biologically active steroid ethisterone, were successfully converted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.