Abstract

AbstractHighly efficient and stable catalysts for the hydrogen evolution reaction, especially in alkaline conditions are crucial for the practical demands of electrochemical water splitting. Here, the synthesis of a novel RuAu single‐atom alloy (SAA) by laser ablation in liquid is reported. The SAA exhibits a high stability and a low overpotential, 24 mV@10 mA cm−2, which is much lower than that of a Pt/C catalyst (46 mV) in alkaline media. Moreover, the turnover frequency of RuAu SAA is three times that of Pt/C catalyst. Density functional theory computation indicates the excellent catalytic activity of RuAu SAAs originates from the relay catalysis of Ru and Au active sites. This work opens a new avenue toward high‐performance SAAs via fast quenching of immiscible metals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call