Abstract

A major impediment to the commercialization of fuel cells is the low activity of electrocatalysts for the oxygen reduction reaction that involves multiple electron transfer steps. Platinum is considered the best cathode catalyst toward oxygen reduction to water; however, Pt remains an expensive metal of low abundance, and it is of great importance to find Pt-free metal alternatives. Among various Pt-free catalysts under development, ruthenium-based compounds show significant catalytic activity and selectivity for four-electron reduction of oxygen to water in acidic environments. This article provides a short review on the different classes of Ru-based catalysts focusing on the catalytically active reaction sites and the oxygen reduction mechanism in acidic media. After a brief discussion of the oxygen reduction kinetics on a pure Ru metal, the paper reviews the catalytic properties of the selected Ru compounds, including crystalline Chevrel-phase chalcogenides, nanostructured Ru and Ru–Se clusters, and Ru–N chelate compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.