Abstract
BackgroundRutaecarpine (Rut) is a plant alkaloid abundant in Euodia ruticarpa which is a Chinese herbal medicine used for treating various cancers. However, the Rut administration effect on prostate cancer in vivo remains unclear. AimIn the present study we established an allogenic TRAMP-C1 prostate cancer mouse model to evaluate the Rut administration effect and mechanism in vivo. MethodsTo unravel the Rut administration effect on prostate cancer in vivo, C57BL/6J male mice (8 weeks old) were randomly grouped (n = 9), subcutaneously loaded with TRAMP-C1 prostate cancer cells and immediately given daily by gavage with Rut dissolved in soybean oil at 7 mg (low dose), 35 mg (medium dose), and 70 mg/kg b.w./day (high dose) for successive 39 days. ResultsRut administration significantly and dose-dependently reduced both tumor volume and solid prostate cancer weight in allogenic TRAMP-C1 male mice. Rut administration markedly increased (TNF-α+IFN-γ) (Th1-)/IL-10 (Th2-) cytokine secretion ratios by splenocytes and TNF-α (M1-)/IL-10 (M2-) cytokine secretion ratios by macrophages as compared to those of dietary control group, suggesting that Rut administration in vivo regulates the immune balance toward Th1- and M1-polarized characteristics. Decreased CD19+, CD4+ and CD8+ lymphocytes in the peripheral blood of allogenic TRAMP-C1 mice were significantly elevated by Rut administration. Tumor weights positively correlated with TNF-α secretions by splenocytes, suggesting that there is a tumor cachexia in the tumor-bearing mice. Tumor weights negatively correlated with IgG (Th1-antibody) levels in the sera, suggesting that Th1-polarized immune balance may inhibit prostate cancer cell growth. ConclusionsOur results evidenced that Rut administration suppresses prostate cancer cell growth in mice subcutaneously loaded with TRAMP-C1 cells and correlated the anti-cancer effects with Th1-polarized immune balance in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.