Abstract

BackgroundEffector proteins of biotrophic plant pathogenic fungi and oomycetes are delivered into host cells and play important roles in both disease development and disease resistance response. How obligate fungal pathogen effectors enter host cells is poorly understood. The Ps87 gene of Puccinia striiformis encodes a protein that is conserved in diverse fungal pathogens. Ps87 homologs from a clade containing rust fungi are predicted to be secreted. The aim of this study is to test whether Ps87 may act as an effector during Puccinia striiformis infection.Methodology/Principal FindingsYeast signal sequence trap assay showed that the rust protein Ps87 could be secreted from yeast cells, but a homolog from Magnaporthe oryzae that was not predicted to be secreted, could not. Cell re-entry and protein uptake assays showed that a region of Ps87 containing a conserved RXLR-like motif [K/R]RLTG was confirmed to be capable of delivering oomycete effector Avr1b into soybean leaf cells and carrying GFP into soybean root cells. Mutations in the Ps87 motif (KRLTG) abolished the protein translocation ability.Conclusions/SignificanceThe results suggest that Ps87 and its secreted homologs could utilize similar protein translocation machinery as those of oomycete and other fungal pathogens. Ps87 did not show direct suppression activity on plant defense responses. These results suggest Ps87 may represent an “emerging effector” that has recently acquired the ability to enter plant cells but has not yet acquired the ability to alter host physiology.

Highlights

  • Biotrophic plant pathogens such as rust and powdery mildew fungi form special feeding structures called haustoria, by which they intimately contact their hosts and secrete large numbers of effector proteins capable of entering into host cells

  • Conclusions/Significance: The results suggest that Ps87 and its secreted homologs could utilize similar protein translocation machinery as those of oomycete and other fungal pathogens

  • We show that a predicted effector, Ps87 of Puccinia striiformis f. sp tritici (GenBank accession number: ES322018.1), can be secreted and can enter plant cells via a conserved RXLR-like motif KRLTG

Read more

Summary

Introduction

Biotrophic plant pathogens such as rust and powdery mildew fungi form special feeding structures called haustoria, by which they intimately contact their hosts and secrete large numbers of effector proteins capable of entering into host cells. Most effectors of fungal and oomycete plant pathogens identified so far are small secreted proteins with high sequence divergence that are expressed prior to or during infection [2,3,4,5,6]. Predicting the functions of such genes and whether the encoded proteins might enter host cells is still very difficult. Effector proteins of biotrophic plant pathogenic fungi and oomycetes are delivered into host cells and play important roles in both disease development and disease resistance response. The aim of this study is to test whether Ps87 may act as an effector during Puccinia striiformis infection

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call