Abstract
This work describes a new electrochemiluminescence resonance energy transfer (ECL-RET) system with graphene oxide(GO)-Au/RuSi@Ru(bpy)3(2+)/chitosan (CS) composites as the ECL donor and Au@Ag2S nanoparticles (NPs) as ECL the acceptor for the first time. The ECL signal observed by the application of GO-Au/RuSi@Ru(bpy)3(2+)/CS composites was enhanced for 5-fold compared to that of RuSi@Ru(bpy)3(2+)/CS in the presence of coreactant tripropylamine (TPA) due to the increased surface area and improved electrical conductivity by using graphene oxide-gold nanoparticles (GO-Au) composite materials. In addition, we synthesized Au@Ag2S core-shell NPs, whose UV-vis absorption spectrum shows good spectral overlap with the ECL spectrum of GO-Au/RuSi@Ru(bpy)3(2+)/CS composites by adjusting the amount of Na2S and AgNO3 in the process of synthesis. The distance between energy donor and acceptor was studied to get the highly effective ECL-RET. Then, this ECL-RET system was developed for sensitive and specific detection of target DNA, and the ECL quenching efficiency (ΔI/I0, ΔI = I0 - I) was found to be logarithmically related to the concentration of the target DNA in the range from 10 aM to 10 pM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.