Abstract

Semiarid loess hilly areas in China are enduring a series of environmental conflicts between urban expansion, cultivated land conservation, soil erosion and water shortage, and require land use allocation to reconcile these environmental conflicts. We argue that the optimized spatial allocation of rural land use can be achieved by a Particle Swarm Optimization (PSO) model in conjunction with multi-objective optimization techniques. Our study focuses on Yuzhong County of Gangsu Province in China, a typical catchment on the Loess Plateau, and proposes a land use spatial optimization model. The model maximizes land use suitability and spatial compactness based on a variety of constraints, e.g. optimal land use structure and restrictive areas, and employs an improved PSO algorithm equipped with a determinant initialization method and a dynamic weighted aggregation (DWA) method to obtain the optimized land use spatial pattern. The results suggest that (1) approximately 4% of land use should be reallocated and these changes would alleviate the environmental conflicts in the study area; (2) the major reshuffling is slope farmland and newly added construction and cultivated land, whereas the unchanged areas are largely forests and basic farmland; and (3) the PSO is capable of optimizing rural land use allocation, and the determinant initialization method and DWA can improve the performance of the PSO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call