Abstract

During the coalescence of a drop with a planar interface, a hole is generated in a microscopic film that separates the drop from the interface. An experimental study has been performed to investigate the time dependent behavior of the radius of the hole generated during coalescence. The study consisted of placing drops of various sizes and physical properties on a planar interface. The coalescence process was recorded from underneath the interface with the aid of a high speed digital camera and a prism. The experiment captured two separate processes, film rupture and the closing of the hole. During the film rupture, the hole radius demonstrated a power law time dependence. Dimensional analysis showed the percentage of time the hole used to reach its maximum radius was approximately constant for all drops. Moreover, all dimensionless drop rupture radii and times fit onto a single master curve and were independent of their physical properties during the opening. However during the closing of the hole, the dimensionless time and radii did not fit a master curve analogous to the hole rupture. The closing of the hole is an entirely different event from the opening and is governed by different parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.