Abstract

Single molecule force spectroscopy is widely used to determine kinetic parameters of dissociation by analyzing bond rupture data obtained via applying mechanical force to cells, capsules, and beads that are attached to an intermolecular bond. The current analysis assumes that the intermolecular bond force is equal to the externally applied mechanical force. We confirm that viscous drag alone or in combination with cellular deformation resulting in viscoelasticity modulates bond force so that the instantaneous intermolecular bond force is not equivalent to the applied force. The bond force modulation leads to bond rupture time and force histograms that differ from those predicted by probability distribution function (PDF) using the current approach. A new methodology that accounts for bond force modulation in obtaining PDF is presented. The predicted histograms from the new methodology are in excellent agreement with the respective histograms obtained from Monte Carlo simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.