Abstract

This paper presents an experimental study of rupture of a subcooled water film falling down an 1 m long heated copper plate with longitudinal grooves of 0.5×0.15 mm2 cross sectional area and 2 mm spacing. It was found that the threshold heat flux at which an initial stable dry patch forms on the grooved surface is about two times higher than that on a smooth surface. Furthermore, the grooves prevent dry patches from spreading over the total heated surface thus essentially delaying the onset of the heat transfer crisis. The main governing parameters of the experiment and their respective values are: initial film temperature (20–95°C), heat flux (0–1.26 W/cm2) and volumetric flow rate (11.1–38.2 l/h) (Re=56.2–653.2).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.