Abstract

AbstractThe back projection method is a tremendously powerful technique for investigating the time dependent earthquake source, but its physical interpretation is elusive. We investigate how earthquake rupture heterogeneity and directivity can affect back‐projection results (imaged location and beam power) using synthetic earthquake models. Rather than attempting to model the dynamics of any specific real earthquake, we use idealized kinematic rupture models, with constant or varying rupture velocity, peak slip rate, and fault‐local strike orientation along unilateral or bilateral rupturing faults, and perform back‐projection with the resultant synthetic seismograms. Our experiments show back‐projection can track only heterogeneous rupture processes; homogeneous rupture is not resolved in our synthetic experiments. The amplitude of beam power does not necessarily correlate with the amplitude of any specific rupture parameter (e.g., slip rate or rupture velocity) at the back‐projected location. Rather, it depends on the spatial heterogeneity around the back‐projected rupture front, and is affected by the rupture directivity. A shorter characteristic wavelength of the source heterogeneity or rupture directivity toward the array results in strong beam power in higher frequency. We derive an equation based on Doppler theory to relate the wavelength of heterogeneity with synthetic seismogram frequency. This theoretical relation can explain the frequency‐ and array‐dependent back‐projection results not only in our synthetic experiments but also to analyze the 2019 M7.6 bilaterally rupturing New Ireland earthquake. Our study provides a novel perspective to physically interpret back‐projection results and to retrieve information about earthquake rupture characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.