Abstract

Vanadium redox flow batteries (VRFBs) are one of the most appealing candidates for large-scale energy storage, and hence, they have to get more developed to overwhelm commercialization obstacles such as high price of membrane and vanadium electrolyte. In this work, we have synthesized “graphene oxide (GO)-multiwalled carbon nanotubes (MWCNT)-RuO2” as positive electrode material for VRFBs. The mixture of GO and MWCNT was prepared, and then, it was modified with RuO2 nanoparticles. The FE-SEM and XRD were utilized to investigate the morphology and structure of as-prepared electrocatalyst materials. Cyclic voltammetry and electrochemical impedance spectroscopy techniques were used to look into the electrochemical performance of as-prepared electrocatalyst for vanadium IV/V redox couple reaction. GO-MWCNT-RuO2 reduced the charge transfer resistance from 223.20 Ω (MWCNT) and 186.60 Ω (GO-MWCNT) to 94.25 Ω. The voltammograms showed that peak separation potential was decreased from 605 mV for MWCNT down to 134 mV for GO-MWCNT-RuO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.