Abstract

Bone sialoprotein (BSP) is a bone matrix glycoprotein whose expression coincides with terminal osteoblastic differentiation and the onset of mineralization. In this study we show that BSP expression is considerably increased in confluent Saos-2 human osteosarcoma cells and in differentiating normal human osteoblasts, concomitantly with the decrease of Runx2, a key transcription factor controlling bone formation. Therefore, we investigated the role of Runx2 in the regulation of BSP expression in Saos-2 cells. Using a mobility shift assay, we demonstrated that Runx2 binds to the BSP promoter only in preconfluent cells. Histone deacetylase 3 (HDAC3) has been recently shown to act as a Runx2 co-repressor. Chromatin immunoprecipitation assays demonstrated that both Runx2 and HDAC3 are detectable at the BSP promoter in preconfluent Saos-2 cells but not when they are confluent and overexpress BSP. Consistently, nuclear Runx2 protein level is down-regulated, whereas Saos-2 cells became increasingly confluent. Finally, the suppression of HDAC3, Runx2, or both by RNA interference induced the expression of BSP at both mRNA and protein levels in Saos-2 cells. Our data demonstrate that Runx2 and HDAC3 repress BSP gene expression and that this repression is suspended upon osteoblastic cell differentiation. Both the nuclear disappearance of Runx2 and the non-recruitment of HDAC3 represent new means to relieve Runx2-mediated suppression of BSP expression, thus allowing the acquisition of a fully differentiated and mineralization-competent phenotype by osteoblast cells.

Highlights

  • Bone sialoprotein (BSP)3 is a glycoprotein that represents one of the major noncollagenous, extracellular matrix proteins associated with mineralized tissues [1, 2]

  • In this study we show that BSP expression is considerably increased in confluent Saos-2 human osteosarcoma cells and in differentiating normal human osteoblasts, concomitantly with the decrease of Runx2, a key transcription factor controlling bone formation

  • We first demonstrated that endogenous BSP expression is significantly increased at both mRNA and protein levels along with confluence in the Saos-2 osteoblastic maturation model and in normal human osteoblasts cultured in a differentiation medium

Read more

Summary

Introduction

Bone sialoprotein (BSP)3 is a glycoprotein that represents one of the major noncollagenous, extracellular matrix proteins associated with mineralized tissues [1, 2]. In this study we show that BSP expression is considerably increased in confluent Saos-2 human osteosarcoma cells and in differentiating normal human osteoblasts, concomitantly with the decrease of Runx2, a key transcription factor controlling bone formation.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call