Abstract
Runt-related transcription factor 1 (Runx1) is a master hematopoietic transcription factor essential for hematopoietic stem cell (HSC) emergence. Runx1-deficient mice die during early embryogenesis due to the inability to establish definitive hematopoiesis. Here, we have used human pluripotent stem cells (hPSCs) as model to study the role of RUNX1 in human embryonic hematopoiesis. Although the three RUNX1 isoforms a, b, and c were induced in CD45+ hematopoietic cells, RUNX1c was the only isoform induced in hematoendothelial progenitors (HEPs)/hemogenic endothelium. Constitutive expression of RUNX1c in human embryonic stem cells enhanced the appearance of HEPs, including hemogenic (CD43+) HEPs and promoted subsequent differentiation into blood cells. Conversely, specific deletion of RUNX1c dramatically reduced the generation of hematopoietic cells from HEPs, indicating that RUNX1c is a master regulator of human hematopoietic development. Gene expression profiling of HEPs revealed a RUNX1c-induced proinflammatory molecular signature, supporting previous studies demonstrating proinflammatory signaling as a regulator of HSC emergence. Collectively, RUNX1c orchestrates hematopoietic specification of hPSCs, possibly in cooperation with proinflammatory signaling. Stem Cells 2017;35:2253-2266.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.