Abstract

In this article, we demonstrate that the normalized runup heights, R/H0 (R = runup height; H0 = incident wave height), for breaking solitary and periodic waves can be characterized by a single dimensionless parameter, called the surf parameter, which is defined by a theoretical wave-breaking criterion. Existing laboratory data for both breaking solitary and periodic waves were collected and are summarized in this article. Breaking waves include surging, plunging, and spilling breakers. To enhance the range of surf parameters for breaking solitary waves, a set of new laboratory experiments was carried out in a large-scale wave flume with a 1/100 slope. The maximum runup heights and the corresponding breaker types were recorded. Several wave conditions in the experiments were on the borderline of plunging and spilling breakers. When the laboratory data were plotted against the surf parameter, they collapsed into a trend, which can be described by a best-fit curve. This empirical formula can be used to provide a quick estimation of maximum runup height for both breaking solitary and periodic waves in the laboratory scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.