Abstract

AbstractLarge‐scale physical model experiments of tsunamis generated by granular landslides and volcanic flank collapses are conducted to study the wave runup on both the hill slope laterally adjacent to the landslide and an opposing hill slope. A pneumatic landslide tsunami generator was deployed on planar and convex conical hill slopes to simulate deformable landslides with various geometries and kinematics. On the landslide hill slope, maximum runup and rundown were observed in the landslide impact region followed by adjacent second maxima after the lateral waves were fully formed. The runup and rundown decayed asymptotically from the second maxima. In the conical island scenario, a localized runup amplification was measured on the lee side of the island. Outside the landslide impact region, the effects of the landslide granulometry on the lateral wave runup are minimal. The lateral wave runup on the planar hill slope was generally larger than on the convex conical hill slope outside the landslide impact region. The convex conical hill slope traps less lateral wave energy. The zeroth mode of the edge wave dispersion relation matched the first and second lateral waves on the planar hill slope and the first wave on the convex conical hill slope. Predictive equations for the laterally propagating wave characteristics are derived and a method to predict the runup on an opposing hill slope is presented. The predictive wave and runup equations are benchmarked against the 2007 landslide‐generated tsunami in Chehalis Lake, British Columbia, Canada.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call