Abstract
The architecture of a system captures important design decisions for the system. Over time, changes in a system's implementation may lead to violations of specific design decisions. This problem is common in industry and known as architectural erosion. Since it may have severe consequences on the quality of a system, research has focused on the development of tools and techniques to address the presented problem. As of today, most of the approaches to detect architectural erosion employ static analysis techniques. While these techniques are well-suited for the analysis of static architectures, they reach their limit when it comes to dynamic architectures. Thus, in this paper, we propose an alternative approach based on runtime verification: We describe techniques to formally specify constraints for dynamic architectures and algorithms to translate such specifications to instrumentation code and corresponding monitors. The approach is implemented in Eclipse/EMF, demonstrated through a running example, and evaluated using two case studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Logical and Algebraic Methods in Programming
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.