Abstract

Abstract : Future extreme-scale systems are expected to contain homogeneous and heterogeneous many-core processors, with O(103) cores per node and O(106) nodes overall. Effective combination of inter-node and intra-node parallelism is recognized to be a major software challenge for such systems. Further, applications will have to deal with constrained energy budgets as well as frequent faults and failures. To aid programmers manage these complexities and enhance programmability, much of recent research has focused on designing state-of-art software runtime systems. Such runtime systems are expected to be a critical component of the software ecosystem for the management of parallelism, locality, load balancing, energy and resilience on extreme-scale systems. In this dissertation, we address three key challenges faced by a runtime system using a dynamic task parallel framework for extreme-scale computing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.