Abstract

Design-time application mapping is limited to a predefined set of applications and a static platform. Resource management at run-time is required to handle future changes in the application set, and to provide some degree of fault tolerance, due to imperfect production processes and wear of materials. This paper concerns resource allocation at run-time, allowing multiple real-time applications to run simultaneously on a heterogeneous MPSoC. Low-complexity algorithms are required, in order to respond fast enough to unpredictable execution requests. We present a decomposition of this problem into four phases. The allocation of tasks to specific locations in the platform is the main contribution of this work. Experiments on a real platform show the feasibility of this approach, with execution times in tens of milliseconds for a single allocation attempt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.