Abstract

Applications running on parallel systems often need to join a streaming relation or a stored relation with data indexed in a parallel data storage system. Some applications also compute UDFs on the joined tuples. The join can be done at the data storage nodes, corresponding to reduce side joins, or by fetching data from the storage system to compute nodes, corresponding to map side join. Both may be suboptimal: reduce side joins may cause skew, while map side joins may lead to a lot of data being transferred and replicated. In this paper, we present techniques to make runtime decisions between the two options on a per key basis, in order to improve the throughput of the join, accounting for UDF computation if any. Our techniques are based on an extended ski-rental algorithm and provide worst-case performance guarantees with respect to the optimal point in the space considered by us. Our techniques use load balancing taking into account the CPU, network and I/O costs as well as the load on compute and storage nodes. We have implemented our techniques on Hadoop, Spark and the Muppet stream processing engine. Our experiments show that our optimization techniques provide a significant improvement in throughput over existing techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.